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ABSTRACT

The LCX has been developed in response to a request for proposal for an aircrai_

with 153 passenger capacity and a range of 3000 nautical miles. The goals of the LCX are

to provide an aircraft which will achieve the stated mission requirements at the lowest cost

possible, both for the manufacturer and the operator. Low cost in this request is defined

as short and long term profitability. To achieve this objective, modem technologies

attributing to low-cost operation without greatly increasing the cost of manufacturing

were employed. These technologies include hybrid laminar flow control and the use of

developing new manufacturing processes and philosophies. The LCX will provide a

competitive alternative to the use of the Airbus A319/320/321 and the Boeing 737 series

of aircraft. The LCX has a maximum weight of 150,000 lb. carried by a wing of 1140 f12

and an aspect ratio of 10. The selling price of the LCX is 31 million in 1994 US dollars.

_,'_ _i. ¸
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1.0 INTRODUCTION

I.I Purpose of Proposed Design

Currently, the airline industry is struggling through one of the most difficult

periods in history due to the market competition brought on by a current recession, rising

fuel prices, and the deregulation act of 1979. This deregulation lifted all restrictions on

fares and allowed intensified pricing competition between airlines. In order to continue to

make profits from the low fares and reduced income, the airline industry is forced to cut

operational and service costs of their fleets. One of the many methods being tried by the

airlines to lower operational costs is to reduce the use of some hubs they are currently

operating. The LCX will facilitate this transition by allowing the airlines to move

moderate amounts of people over a medium range in an economically efficient manner.

Traditionally the airlines have not found it economically practical to consistently fly

150 passengers 3000 nm. in the US domestic market. Instead of direct transportation of

passengers from a medium market locale to their destination, airlines route these

passengers to large city hub airports via regional carriers. Passengers are then carried to

other large hubs via wide-body aircraft for mass transportation at low cost. With the

LCX, airlines will be able to connect more secondary airports with direct flights where

wide-body jets are unable to service due to size restrictions. The LCX can compete as a

midsize medium range carrier because it has reduced fuel burn (approximately 14%)

during cruise reducing its trip cost. The fuel savings comes from incorporating Hybrid

FOWL ENTERPRISES 1 LCX



LaminarFlow Control(HLFC) technology. HLFC lowers the parasite drag over the wing

and thus the fuel burn required.

Another use of the LCX is its utilization as a replacement on normal widebody

routes when they can not be filled. Examples would be during early morning and late

fight flights and during the slow travel periods of the year. The LCX will be able to

accomplish the mission with a lower trip cost than a widebody aircraft. The low per

passenger seat mile cost of the widebody is only effective when the aircraft is filled to at

least half capacity with passengers.

1.2 Investigation of Similar Aircraft

In comparing the LCX to other aircraft, two aircraft: were found to be capable of

meeting the requirements of the RFP with minor revisions. These two aircraft are the

Airbus A320/A321 and the Boeing 737. Although the maximum capabilities of these

aircraft are similar to that of the LCX, they are designed for optimum operating ranges at

much shorter distances than the LCX. This is one of the major capabilities that sets the

LCX apart from its competition. The A320 and Boeing 737 must reduce passenger load

to achieve the range the LCX is capable of with a full load of passengers and bags.

One of the most recent additions to short-medium range class of aircraft is the

Airbus A320 series of aircraft. The A320 uses advanced technologies such as composite

materials, fly-by-wire flight control systems, and computer central monitoring of all

systems and functions. The A320 uses either CFM-56 or IAE V2500 series turbofan

FOWL ENTERPRISES 2 LCX



engines.TheA320 hasamaximumtakeoffweightof 158,000 pounds with a range of

2,600 miles at an altitude of 37,000 feet.

The Boeing Company, based in Seattle, Washington, is the manufacturer of the

second aircraft researched concurrently with the preliminary design of the LCX: the 737.

Boeing has sold more 737's than any other civilian commercial transport aircraft type in

the history of aviation. Powered by CFM56 engines, the 737 has become the fleet

mainstay of carriers such as Southwest Airlines. The 737 is available in 3 versions: the -

300, -400, and -500. Boeing has now launched new versions of the 737 called the 737-X,

a new generation of 737 capable of meeting the current design RFP. The LCX was

designed to out perform the 737-X at ranges larger then 1000 nm. The current version

737-300 has a maximum take-offweight of 135,000 pounds with a range of 2,350 miles at

35,0OO feet.

1.3 Design Requirements of the LCX

The LCX is designed to meet all proposed requirements and enable the airline

industry to carry 153 passengers with a profit at medium range. Using technologies

available by the year 2000, the proposed aircraft has to accomplish this at low cost. A

summary of the given requirements follows and the complete requirements are provided

in Appendix A.

-Warm up and taxi for 15 rain., SL,ISA+27 ° day

- Take-offwithin a field length of 7000 fi

- Climb at best rate of climb to best cruising altitude at b_'t altitude

FOWL ENTERPRISES 3 LCX



- Cruise at 0.99Vbr

- Land, with domestic fuel reserves, within a landing field of 5000 it

- Taxi to gate for 10 minutes

After reviewing the RFP, Fowl Enterprises concluded that two approaches are

possible;

(1) A lightweight, simple aircratt that would be very economical at short range, or

(2) A very efficient aircraft that could operate effective at short range, but would

provide outstanding economics at longer ranges.

There are numerous aircratt competing in the short range market, therefore it was decided

to design for the longer range market niche.

FOWL ENTERPRISES 4 LCX



2.0 CONCEPT EVOLUTION

2.1 Final Design Shape and Concept Philosophy

The final basic design of the LCX can be found in Figure 2.1.1 on the following

page. This figure displays the outer design parameters and basic geometry of the LCX.

As can be seen, the aircraft is very conventional in its basic layout. The basic design

layout of the aircraft available in today's market is the result of an evolutionary process

which is based upon a tremendous amount of work and experience. This evolution has

refined the design to the point that it provides near optimum performance. For this reason

the LCX in most respects was designed as a similar aircraft to this optimum configuration.

Of all the other configurations studied, none presented any significant improvements over

what is currently being used. There may be opportunities in the future, through

technological improvements in materials or manufacturing techniques, to radically change

the design from the current basic shape. Other improvements may come in engine

performance and further electronic control and can be applied to the conventional layout

of the LCX. However, no significant shape modifications are expected to be developed

for a commercial transport in the near future that would significantly reduce overall cost.

2.2 Design Evolution in its Beginning Stages

Each member of Fowl Enterprises initially designed an individual aircraft to meet

the RFP. In this process, the weight, wings, engines, interior layout, and basic

configuration were the main focus of the design. The individual results can be seen in

FOWL ENTERPRISES 5 LCX
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Figure 2.2.1 found on the following page. From these ideas and research, a team design

was born. It started as a composite of the five different aircraft and developed from there.

Strong points of each design were explored and considered as to how it would help or

hurt the composite design.

The joined wing, upon initial investigation, displayed many advantages. These

include structural weight savings in the wing and the possible elimination of the

empennage by incorporating the split wing as a V-tail. The disadvantages that prevented

the use of this technology were flow interference effects of one wing to the other causing

added drag and the added expense involved in production and R&D cost due to a lack of

research data.

A three engine layout would eliminate the need for Extended Twin Engine -

Operations (ETOPS) certification and was examined for this reason. But as further

information was gathered in the subject, it was seen that ETOPS is becoming more of a

standard certification procedure. The majority of new transports are twin engine. The

cost of maintaining and accessing the third engine would add significantly to the initial

cost of the aircraft and the cost of keeping extra spares available for the third engine. The

smaller engines used for a three engine layout would also have higher specific fuel

consumption (sic) then the larger engines of a two engine layout. Therefore a cost

concern eliminated the use of a three engine configuration.

FOWL ENTERPRISES 7 LCX



Figure 2.2.1" Individual Designs

"FOWL ENTERPRISES $ LCX



2.3 DesignEvolution from Initial Composite form to Maturity

Several new ideas entered into the design as Fowl Enterprises began to work with

a single aircraft. The use of a twin aisle to add comfort, provide expansion possibilities,

and increase utilization through shorter turn around time was examined. The benefits

were appealing since less than two feet were being added to the diameter of the fuselage.

The design carded this interior for several weeks. The RFP gave little consideration to

comfort or expandability but stressed a low cost aircraft. Since drag and weight cost

money, the fuselage diameter was cut and only a single aisle was incorporated.

Along the same lines, the LCX was designed with a three class configuration. The

three class configuration was designed with a large first and business class to force a large

cabin area. At 153 passengers the mixed class could provide more revenue to the airlines

if the first and business class seats were filled. When the aircraft flew routes where these

seats could not be filled, they would be replaced with economy seats. The reduction in the

revenue of each seat would be offset by the increase in the number of seats. This is based

on the assumption that the LCX could fill these seats when flying competing routes with

an aircraft like the A320. An intermediate interior configuration was created where half of

the first and business class could be replaced with economy seating. The speed at which

this change could be performed was increased using expandable seat frames that could

slide out from first to business to economy size with little effort. The full economy class

configuration would carry over 180 passengers at a range of around 2400 nm.

FOWL ENTERPRISES 9 LCX



The three class configuration offered airlines a great deal of flexibility in interior

layout but was eliminated due to the weight and drag the longer fuselage added. Another

driving factor leading to the removal of the three class configuration was the effect it had

on range. Laminar flow control is only effective in reducing operating cost when utilized

over long ranges. The reduction in range of the larger fuselage diminished this savings so

a shorter fuselage with a smaller business first class was used.

The LCX wing loading was increased during the design process also. It was

increased from 95 to 130 lb./ft.^2. The initial low value occurred for two basic reasons.

Initially it was assumed that the normal value was between 90 and 120 lb./fi^2 and that a

low value was needed to allow for expansion. When the decision was made not to design

for expansion, the wing loading was raised to lower wing size and the cost of the LCX.

The second reason for an increase came from the discovery that the current industry trend

is for increased wing loading. The current standard varies from 110 at the low end, up to

160 at the high end. By changing the wing loading, the size and weight of the wing was

decreased.

In order to lower the parasite drag, a new technology system was added to the

LCX. Hybrid Laminar Flow Control (HLFC) is used to lower the parasite drag over the

wing. This is accomplished by maintaining laminar flow over significant portions of the

wing through the use of suction through a porous surface. This technology has been

researched by NASA and industry. The first extensive research occurred during the oil

crisis of the 1970's and has regained interest due to advances in manufacturing technology

i I i i
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(Ref.7). The use of HLFC is incorporated into the LCX to reduce fuel burn and thus

increase maximum range capabilities. The complications and complexities of

incorporating HLFC into the LCX are addressed in section 6, HLFC Systems. The effect

of HLFC on the overall design evolution of the LCX was not as extensive as initially

thought. Fuselage mounted engines were again examined to lower vibration on the wing,

but further research showed this was not necessary (ref. 11). HLFC had the greatest

effect on the wing layout by changing the high lii_ devices and spar location. Overall,

HLFC blended well into the aircraft design.

2.4 Design Point Analysis

The determination of the design point of the LCX has been an iterative process.

The design point analysis used one engine inoperative Federal Aviation Regulations (FAR)

and ceiling limitations to establish a range of possible design point values. Further

limitations on the design point include maximum landing and takeoff lif_ coefficients, wing

size, and available engine thrust.

The final results of the design point analysis can he seen in Figure 2.4. I found on

the following page. The selected thrust to weight ratio (T/W) of the LCX had to be equal

to or higher than a value of 0.33 to meet the required climb gradient during takeoff. The

wing loading (W/S) value of 130 1b./t_^2 was balanced between wing size and the cost of

incorporating a complex high liR system to achieve a landing fif_ coefficient of 3.2.

Furthermore, a takeoff liR coefficient of 2.0 was obtained after the selection of the design

point was accomplished.

FOWL ENTERPRISES 11 LCX
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3.0 PERFORMANCE

3.1 Mission Profile

The LCX was designed for two basic states of HLFC parasite drag reduction

technology, operational and failed. Failure of HLFC can occur due to adverse weather or

system failure. The LCX was designed to meet the RFP requirements under the most

pessimistic state of system failure throughout the entire mission. The mission profiles for

both states is shown in Table 3.1.1.

No HLFC lb. Fuel HLFC lb. Fuel

warm-up 321 321

takeoff 656 643

climb 3,905 3,827

cruise 24,090 21,681

loiter 752 744

decent 396 396

landing 178 178

reserves 25,000 25,000

Table 3.1.1: LXC Mission Profile and Fuel Burn

Fuel use was calculated for each segment of the mission. During the climb phase no credit

was taken for range. The use of HLFC will begin at 10,000 ft. as the speed of the LCX

increases and density decreases. The LCX will then continue climbing to its cruising

altitude of 36,000 ft. During cruise 3000 nm. can be covered. No range credit is taken

during descent. The reserves for the LCX include fuel for an hour added to cruise, a

missed approach, and travel to an alternate airport 1O0 nm. distant. The reserve

i i
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requirementsweredeterminedusingboth McDonnell Douglas and Boeing definitions of

domestic reserves (Ref. 16 and Ref. 25). The reserve fuel calculations were all made

without taking credit for HLFC drag reduction or penalty for HLFC power requirements.

3.2 Climb

The best rate of climb for the LCX was interpreted as the most economic rate of

climb For the LCX, the faster altitude is obtained, the sooner LFC can be utilized

Therefore the drag on the LCX can be reduced sooner if the LCX climbs at its highest

rate Also when the sic and thrust can be assumed to vary linearly with altitude, the most

economical rate of climb is found to be the fastest rate of climb to cruising altitude (Ref.

27).

The rate of climb of the LCX is constrained under an altitude of 10,000 ft. by the

FAR velocity limit of 250 kts. The LCX then accelerates to the velocity of maximum

climb rate. The maximum rate of climb with altitude is shown in Figure 3.2.1 below. The

maximum climb rate at altitudes above 27000 it. is limited to allow time for the cabin

pressure to decrease to its minimum level. As the pressure in the cabin decreases at the

maximum allowable rate, the LCX can increase altitude without putting additional strain

on the fuselage from the pressure gradient between the cabin and outer air. At the slower

climb rate the cabin pressure reaches its minimum level at the same time the LCX reaches

altitude. The LCX climbs to altitude in 20 minutes. The total fuel burned during the climb

phase is 3200 pounds.

FOWL ENTERPRISES 14 LCX
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3.3 Range and Endurance

27.

The range and endurance curves were calculated using equations from Reference

As a result the curves in Figure 3.3.1 were produced.
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Figure 3.3.1: LCX Range and Endurance
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The endurance curve is labeled as Ct/CD and the range curve is labeled as the CL". 5/CD.

The best range velocity is at Mach 0.8. The best endurance velocity is at Mach 0.72, were

L/D is a maximum. The LCX is designed for flight at a Mach number of.8 to obtain best

range and a competitive flight time.

40000 Max.PAX Configuration Max. T_..-offWci_t
150,000 Ibs

30000

20000

 oooo

0

HLFC

0 1000 2000 3000 4000 5000

RANGE (.mi)

Figure 3.3.1: LCX Payload Range

The range for the maximum PAX configuration (165 passengers) without HLFC suction

operating over the wing is 2400 nm The range for the mixed class (153 passengers) is

3000 nm. When laminar flow is achieved over the wing these values increase to 2650 nm.

and 3350 nm. respectively.

3.4 Take-off and Landing

The takeoff and landing capabilities of the LCX allow it to operate in smaller

airports. This coincides with its mission of extending the use of direct flights to and from

regional airports. The landing field requirement is easily met through the use of a fairly

complicated flap system that includes double slotted Fowler flaps at the trailing edge and a

Jl
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variable camber Krueger flap at the leading edge. The calculated takeoff and landing

distances meet the RFP requirements of 7000 ft. and 5000 ft.
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4.0 INTERIOR LAYOUT

The LCX cabin design process was driven by the need to seat passengers in the

most efficient, space-saving manner. As required a minimum of 153 passengers in a mixed

class was used for interior spacing analysis. The interior layout is also designed for a

satisfactory compromise between passenger comfort and aerodynamic efficiency. The

final layout includes a comfortable business-first class and an economy class.

4.1 Seating Layout

The optimum seating arrangement for the economy class is six across. If the

number were increased to seven or decreased to five, it would result in a less efficient

fuselage. The larger number of seats would increase the fuselage diameter and require the

use of two aisles. This would result in the increase of drag, weight, and operating cost.

Decreasing the number seats to five abreast would lengthen the aircraf[ and increase the

surface area, drag, weight, and operating cost.

To enhance passenger comfort, the center seat width of the LCX is increased by an

inch to a total of 18 in. The outer seats have a width of 17 in. and a seat pitch of 32 in.

The cross section shows the placement of the seats as seen in Figure 4.1.1.

The business-first class, with larger seats than found in most business classes, are

sized with comfort in mind. This is important to maintain the patronage of both the first

class and business travelers used to flying separately on widebody flights. Seat

arrangement and dimensions are shown in Table 4.1.1 found on the following pages.
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SeatPitch
SeatWidth
Armrest Width

Height

Business

38 in.

21 in.

3 in.

42 in.

Economy

32 in.

17,18(Center Seat) in.
2 in.

39 in.

Table 4.1.1: LCX Seating Arrangement

The over head storage was designed so that a traveler can bring compact carry-on

luggage into the aircraft cabin. The economy class has 3 fP and the business first class has

3.2 ft2 of over head storage.

4.2 Galley, Lavatories, and Closet

Provided for the traveler is one closet at the entrance to the aircraft. There is one

galley located in front of the cabin and one galley located in the rear. The forward and

rear galleys were placed in compliance with RFP requirements. The galleys are sized to

allow one meal and snack to be provided to each of the 165 passengers in the full

economy layout.

The LCX is also designed to have 4 lavatories which provides one lavatory per 41

passengers in the all economy configuration. One lavatory is located in the front of the

aircraft, sized for accessibility by disabled people. Three lavatories are located in the rear

of the cabin for the economy class. The closet is able to house a wheel chair and the

wardrobe for the business first class. The placement of the above galleys, lavatories, and

closet are shown in Figure 4.2.1 and Table 4.2.1.
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Forward Galley

Rear Galley

Front Lavatory

Rear Lavatories

Closet

43 in. x 60 in.

55 in. x 120 in.

43 in. x 60 in.

37 in. x 40 in.

25 in. x 50 in.

Table 4.2.1: LCX Interior Dimensions

4.3 Layout of the Exits

FAR 25 requires that there be two Type I and two Type III doors on each side of

the aircraft for 140 to 179 passengers. The forward left side loading door (type I) is

designed to allow passengers to comfortably load and unload the LCX. The loading door

dimensions are 32x72 inches. The three other type I doors are sized to allow for easy

servicing of the galleys and emergency exits. The dimensions of these doors are 27x60

inches. Two exit doors (type III) are placed over the wings. This enables the LCX to

meet the FAR's and allows passengers to egress quickly in case of a emergency landing.

4.4 Attendant Seats

FAR 25 requirements state that the attendants must be able to see 80 percent of

the passengers during takeoff and landing phases of flight. To meet this criteria, two of

the attendants are placed on the side of the rear lavatories and face forward. This enables

them to see over 80 percent of the passengers in both configurations. The other two

attendant seats are placed on the forward lavatory facing aft. The placement of the

attendant seats can be seen in Figure 4.2.1.
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4.5 Flight Deck

The LCX flight deck is designed for two-member crew operations featuring digital

electronic systems and instruments, flat panel displays, automatic navigation and landing

systems, and built-in test equipment. Goals to be attained in this design include safety,

reduced workload, reliability, maintainability, and low operation costs.

Some of the more modem design enhancements in the LCX cockpit include

uncluttered instrument panels, simplified caution and warning systems, low-noise

windows, and better crew comfort. This can be seen in Figure 4.5.1.

GLARESHIELD
CENTER PANEL

OVERHEAD
PANEL

LEFT FORVARD
INSTRUMENT PANEL\

CENTER FDRVARD
PANEL

FDRVARD AISLE
STAND PANEL

RIGHT FORVARB
INSTRUMENT PANEL

AFT AISLE
STAND PANEL

CONTROL
STAND

Figure 4.5.1" LCX Cockpit Layout

An uncluttered instrument panel was achieved through the "layer" philosophy. The layer

philosophy incorporates flat panel displays where each instrument, instead of having only
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one or two functions, allow many levels of information to be readily displayed for the

pilot. This cleaned up the cockpit environment significantly. The alert system is simplified

by having a minimum number of different aural alerts, which are grouped according to the

level of action required, thus reducing nuisance alerts. Finally, crew comfort is enhanced

by the provisions of more comfortable and durable seats, lower noise levels, more efficient

air-conditioning, and better internal and external vision. Typical stowage space under the

observer's seat (centered behind crew seats) is provided as well as a coat closet and flight

kits.
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5.0 AERODYNAMICS

5.1 Airfoil Characteristics

The LCX is designed to travel at a high subsonic velocity to lower the block time

of each flight. This allows the LCX to be competitive with similar sized aircraft. It is also

designed with a high aspect ratio wing to lower induced drag. The supercritical airfoil

used on the LCX helps to achieve both a high velocity and a high aspect ratio wing. The

higher drag divergence Mach number of a supercritical airfoil requires less sweep in the

wing and allows for a greater thickness ratio at the same cruise Mach number. The

additional thickness of the airfoil provides room for a larger structure with higher stiffness

and moment of inertia. With the lower sweep and larger thickness, a high aspect ratio can

be achieved without incurring large structural weight penalties.

In addition to shaping the airfoil with supercritical technology, the design of the

airfoil must also incorporate a flat contour over the upper surface to maintain the laminar

flow stabilized with suction applied at the leading edge of the wing (Ref. 10,13,26). Since

a supercritical airfoil already has a flat contour the modification necessary to stabilize

laminar flow will not be extensive. The disadvantage of the supercritical airfoil is an

increase in the pitching moment characteristics due to the aft loading characteristics of the

airfoil. One problem encountered in design modification to the airfoil is the effects it has

on the airfoil characteristics when laminar flow control is inactive. The change in airfoil

characteristics can not be significant when hybrid laminar flow control is lost.

FOWL ENTERPRISES 25 LCX



Thedesignof theactualairfoil wasnot chosenor accomplishedbyFowl

Enterprises.Theairfoil designsstudiedwerecreatedin theearly 1980's. Currentdesigns

werenotdiscovered.In orderto attainairfoil characteristicsthat would representthe

capabilitiesof currentdesigntrendsaneducatedengineeringanalysiswasperformedusing

thedataavailableandtheLCX airfoil characteristicswerechosen.Theresultsthat Fowl

Enterprisesbelievesit canachievearefoundinFigure5.1.1(Ref.2,10,13,24,26).

0 2 4 6 8 10 12

alpha (deg.)

_ M=.70
M=.76

"--'*-_ M=.80
E

Figure 5.1.1: LCX C1 vs. Alpha

5.2 Wing Layout

The overall wing layout of the LCX is found in Figure 5.2.1. The basic

characteristics include a span of 107 fi with an aspect ratio of 10. A high aspect ratio is

necessary on the LCX to balance the reduction in parasite drag accomplished with HLFC

with a subsequent reduction in induced drag. A high aspect ratio also lowers the wing

chord allowing for laminar flow over a greater percentage of the wing and thus a greater
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percentageof parasitedragis reduced.The cost of a high aspect ratio wing comes fi'om

the weight added by the necessary structure of a larger wing span. For this size aircraft

the span is within the capabilities of current maintenance facilities and airports. A higher

aspect ratio was not used because the structural weight penalty incurred was larger then

the benefits gained in drag.

22,7 L_-L 88

Z

4,9 j

Figure 5.2.1: LCX Wing Layout

The taper ratio of .3 was chosen to coincide with current trends in industry. The

sweep was calculated using the supercritical airfoil data generated with a drag divergence

Mach number of.76. At this drag divergence Mach number the half chord sweep of 26 °

was calculated. The half chord sweep was used to accommodate for 3-D effects and the

effect of the body on the flow over the wing. The resulting quarter chord sweep is28 °.

The thickness ratio of the wing is reduced fi_om 13.5% at the chord to 9% at the tip. A

dihedral angle of 6 ° was added in order to allow for ground clearance of the large turbofan

m
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enginesusedon the LCX This resulted in a large vertical tail as discussed in the stability

section. The wing also houses the fuel used by the LCX All of the fuel is located in the

wing with enough volume to contain 46,000 lb. of fuel.

5.3 Fuselage and Empenage Layout

The LCX has a circular cross section to reduce the structural weight necessary to

contain the pressure at altitude inside the fuselage. This form of the fuselage doesn't

adversely effect the aerodynamics &the LCX since it doesn't add much length or diameter

to the LCX layout. The nose was designed to limit the acceleration of the flow around it

without adding significantly to the wetted area and skin friction or limiting the pilot view

below the FAR requirements.

The tail of the aircraft was designed to allow for the limits of incidence of the

horizontal stabilizer and for the structure needed to support the horizontal tail. The size

was limited to minimize the chance &tail strike on rotation and to keep the adverse

pressure gradient experienced at the tail low enough to not induce separation. The tail is

designed to satisl_, these criterion and to provide room for the APU.

5.4 Drag Components

The drag of the LCX is composed of both parasite and induced drag. The use of

laminar flow provides a reduction of the parasite drag. The suction applied at the leading

edge section and the shaping of the airfoil over the upper surface establish laminar flow to

over 50% of the chord on the upper surface. Beyond this point the flow is supersonic

i i
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causingtheflow densityto dropwith therisein temperaturereducingthe parasite drag

also. With laminar flow being added to the upper surface of the wing parasite drag is

reduced by approximately 50% (Ref 2,7,14,16). The total wing drag then drops by

approximately 36% This equates to approximately a 11% reduction in aircraft drag for

an aircraft in the LCX size range. The approximate parasite drag breakdown can be seen

in Figure 5.4.1.

flap tracts

2%

struts

tail 2% wing

20o/o 290/o

body
41%

nacelles

6%

Figure 5.4.1: LCX Drag Breakdown with HLFC

An accurate prediction of the overall reduction would take extensive airfoil and wind

tunnel analysis not possible within the scope ofa 9 month report. The reduction used was

determined from various sources. The main sources included Boeing and McDonnell

Douglas studies performed in the early 80's and a few discussions with engineers at the

companies who were familiar with the HLFC projects being performed (Ref. 7,14,16).
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Thereductionin dragonthenacelleswith the application of HLFC to them was found in

NASA reports also (Ref 5).
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Figure 5.4.2: LCX Coefficient of Drag Comparison

The values of drag that were found for the LCX can be found in Figure 5.4.2. The

L/D value that corresponds to the turbulent flow aircrait reaches a maximum value of 19.5

at its optimum condition. With the use of HLFC this value increases to a value of 21.5.

These values include drag reduction techniques being incorporated into most modem

aircrat_ in terms of minimizing the drag of the nose and cockpit glass, better fairings, and

reduction of drag in the engine pylon design. With all these factors accounted for a

modern transport can obtain L/D values in the 20 range.

5.5 High Lift Devices

The LCX will incorporate the use of a three flap system. The two main flaps will

be slotted Fowler flaps and the third will be a Krueger flap at the leading edge. The att-

i i
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mostflapwill alsobeusedto controlpressuredistributionin theaidof laminar flow. It

will accomplish pressure distribution control through small deflections during cruise and

climb.

The leading edge Krueger flap also serves as an insect shield for the leading edge

of the wing. It is necessary to protect the upper wing surface from insect contamination

which would disrupt the laminar flow. To serve as insect protection for the entire wing it

covers the full leading edge span. It will need to be deployed until the aircraft climbs out

past 500 feet of altitude. It has been determined that the large majority of the insect

population exist under 500 feet of altitude and once beyond this altitude insect

contamination is no longer a concern to laminar flow on the wing. The problem

encountered with the Krueger flap being used at takeoff is that it can not seal to the wing

and thus tends to be a high drag device that lowers the overall lit_ to drag ratio, At V_ and

one engine inoperative climb this situation becomes critical and would end up requiring

additional thrust. For this reason a variable camber Krueger is utilized to control the drag

penalties while still allowing the flap to act as an insect shield. The additional litt obtained

at landing, by the variable Krueger flap, allows for simplification of the Fowler flaps at the

trailing edge.

To provide for short field access as prescribed by the RFP, double slotted Fowler

flaps are incorporated as the final addition to the high litt system. With the use of these

flaps and the addition of the Krueger flaps on the leading edge a maximum litt coefficient

of 3.2 is obtained at landing. The high drag of variable camber Krueger flaps in their

i i | i
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landingconfigurationhelpto slow the aircraft down at landing. With the lift coefficient

obtained fi'om the LCX high lift systems, the LCX can land in 4,890 ft. at 90% of its

maximum takeoff weight.
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6.0 HLFC SYSTEMS

6.1 Reasons for the use of HLFC

The chief benefit of HLFC comes in the form of savings in fuel bum. The fuel

savings offered by HLFC ends up to be about 12% of that of a modem turbulent flow

aircraft, but only during cruise at altitude. The reduction in fuel burn can be used in two

ways. The first would be to reduce the maximum gross takeoff weight while maintaining

the same range. The other option is to increase the range of the aircraft while maintaining

the same maximum gross takeoff weight. The LCX is designed to the second option. The

reason for this decision was to increase the capabilities of the LCX to fill in for widebody

aircraft at longer ranges and expand the marketability of the aircraft. The other reason is

that if the system is inoperable for any reason the LCX can still complete the RFP.

HLFC also reduces the impact of fuel price on the airlines. It does increase the

effect of range though. The combination of these give the LFC an advantage if it is flown

according to the RFP as Fowl Enterprises has interpreted it. HLFC helps the LCX create

a new market niche that was not as economically profitable before its use.

6.2 HLFC Performance

Since HLFC has not been implemented on a production aircraft before, there exists

questions as to its reliability and performance. The airframe manufacturers have been

completing studies in this area under the sponsorship of NASA. The first wave of studies

occurred in the early 80's. These tests gave real data into the areas where laminar flow
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research needs to be expanded and where solutions have been accomplished. The latest

tests in HLFC have just been completed but the printed results are not available to the

general public. A brief discussion of Boeing's results with a Boeing engineer revealed that

HLFC was shown to be feasible, but the actual improvements to economics depend on the

individual application.

Joint testing performed by McDonnell Douglas and Lockheed in the early 80's

gave an initial look into HLFC and two methods of achieving significant laminar flow

regions over the upper surface (Ref. 36). These tests showed the conditions where

suction could sustain laminar flow and the conditions where the flow would become

turbulent despite suction.

The major causes found to effect laminar flow are chord Reynolds Number and

surface contamination on the upper surface. Reynolds Number has the greatest effect at

low altitude where the density is high. The large value of Reynolds Number at low

altitude causes the flow to transition to turbulent, in spite of suction. At 10,000 ft. suction

starts to have a significant effect allowing for the benefits of laminar flow control to be

realized. The amount of laminar flow over the upper surface of the wing increases as

altitude increases and Reynolds Number decreases (Ref. 16).

Surface contamination effects laminar flow in the local region of the

contamination. The contamination can occur fi'om various sources. The first would be in

the manufacture of the upper surface of the wing. It has been shown through NASA and
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Douglas Aircraft experiments that a titanium skin can be manufactured with tight enough

tolerances to eliminate the surface waves that would cause loss of laminar flow.

Another type of contamination occurs while operating the aircraft during regular

flights. The most critical type is from ice crystals formed in clouds bombarding the wing.

When flying through clouds, these crystals cause laminar flow to be lost. No method of

regaining laminar flow inside a cloud exists, but upon exiting the clouds laminar flow is

regained. One benefit of travel through clouds is that it tends to act as a washing

mechanism for the wing. Any particles stuck to the wing will be washed off and upon

exiting the cloud laminar flow is regained in that area. From average weather studies it

was found that most aircraft need to fly through the clouds 6% of the time. This was

confirmed by three years of flight test of HLFC gloves flown in a NASA simulated airline

scenario (Ref. 25).

A second source of contamination that can occur while the aircraft is in service is

to have insects stick to the wing surface causing the flow to trip to turbulent. The solution

to this problem was to implement a insect shield to deflect insects. The shield acts similar

to what is found on the front of a truck. The shield takes the form ofa Krueger flap to

maximize its use. Since the insect population is mainly located below 500 feet of altitude

this solution works extremely well.

The final form of surface contamination comes from ice forming on the wing while

purging water from the system. This generally occurs when water has collected in the

system after sitting for a long period of time in the rain. The solution to this problem

i i i
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could occur through heating of the entire leading edge or by mixing an anti-icing fluid with

the water being ejected. The LCX uses the second option and carries this fluid only when

water has collected and needs to be purged from the system. As the LCX climbs, the fluid

is pumped out with the water and the weight penalty of carrying extra fluid diminishes to

nothing.

6.3 HLFC Systems

The HLFC systems are concentrated in the leading edge of the wing, forward of

the front spar. This section of the wing is made of a .025 in. thick titanium skin that has

been drilled with .0025 in. diameter holes used for suction. The holes are drilled in a .025

in. square grid using laser drilling technology. This technology is used because it allows

the holes to be drilled at an angle, banking inward, making clogging of the holes less

likely. A reverse flow purge is also incorporated into the system to clear blockages in the

porous surface and to purge water that might be collected in the system due to rain or

washing. When the reverse flow is used to purge the system of water an anti-icing fluid is

added to prevent freezing of the extracted water.

The flow through the leading edge porous surface is controlled through the use of

ducts running spanwise along the leading edge of the wing. The system is run by electric

pumps located in the fuselage that are powered by the engines. The engines are used as

the power supply since they are the most efficient source of power on the aircraft. The

system will be patterned after that used by Boeing in its latest flight tests. The estimated

weight, added by the entire system, totals 1,500 pounds.

!
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7.0 PROPULSION SYSTEMS

7.1 Considerations

There are several concerns addressed when integrating the propulsion system with

the aircraft. These concerns include fuel efficiency, thrust available, foreign object

damage, maintenance, interference drag, and environmental concerns for noise and

emission pollution.

7.2 Thrust Requirements

From the sizing program the thrust to weight ratio(T/W) was selected to be .33.

The required thrust for the LCX is therefore 49,500 lb. To supply this thrust, the V2527

and CFM56-5A3 engines were investigated. The main reason for their selection is that

they are currently available and are being made quite reliable. The engine chosen for the

basic installation was the V2527, but the LCX also has the option to use the CFM56-5A3.

Both engines have a low sfc, which will reduce the cost of operating the LCX.

The engines also have the advantage of being over four years old. As a result,

maintenance problems have been reduced and maintenance personal have a better

understand of the engine. Table 7.2.1 compares the two engines before installation which

were attained from Reference 17. One noticeable difference between the two is the fan

diameter, which means that the landing gear will have to be modified to accommodate the

different engines.

m
m
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Fan Diameter

Dry Weight

Cruise Conditions

CFM56-5A3

68.3 in.

4995 lb.

V2527-A5

63.0 in.

4942 lb.

Altitude

Speed

Thrust

SFC

Sea Level Conditions

Thrust

SFC

35,000 it.

Mach 0.8

5000 lb.

0.596 Ib./hr/lb.

26,500 lb.

O.45 Ib./hr/lb.

35,000 ft.

Mach 0.8

5250 lb.

0.58 lb./hrflb.

26,500 _.

O.45 lb./hrflb.

Table 7.2.1: LCX Engine Data

When the engine is installed on the aircraft the thrust is effected by engine bleed

and power extraction. The losses are caused by high-pressure air being bled from the

engine. Bleeding results in a loss of between 2 to 5 percent of the uninstalled thrust. The

power extraction for each engine ofa 150,000 lb. aircraR under normal operation is 200

lb. (Reference 27). The power for the LFC is 150 HP for each engine. Total horsepower

extraction is 350 HP for each engine. The thrust loss was estimated to be 1750 lb. for a

26,500 lb. engine. Since the thrust required is 49,500 lb. it was determine that a 26,500

lb. engine is required.

7.3 Environmental Issues

Two environmental concerns for propulsion are noise and emissions. The noise

produced by the engines are caused by exhaust gas on takeoff and fan noise when landing.

The noise on takeoffhas been reduced by the engine manufactures who redesigned the

i
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engineto havea higher by-pass-ratio. Increasing the by-pass-ratio decreases the exit

velocity and therefore reduces the takeoff noise. The noise on landing has been reduced

by using an advanced broad-band acoustical liner. The position of the liner from reference

15 can be seen in Figure 7.3.1.

J_mt Fire exhl_st

acous_k Fin cue duct v.oustic

tre&tment scoustic treatment

treatment

Figure 7.3.1: LCX Acoustical Liner

Both engines meet the FAR stage three requirement of less than 100 dB for approach, 91

dB for takeoff, and 97 dB for sideline. Since it meets these requirement the LCX will be

able to operate etticiently into and out of noise sensitive airports.

Both engines have reduced the emission by using a two stage burner. The two

stage burner greatly reduces the NOx emissions. It also reduces other pollutants, such as

carbon monoxide, unburned hydrocarbons, and smoke. At this time the V2500 is 40%

below and the CFM56 is 35% below the legislative limit for NOx emissions. The

NOx emissions for both engines are expected to drop in the upcoming years. This is very

important for the aircraft industry since countries are starting to tax planes for NOx

emissions.

i i
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7.4 Nacelle and Pylon

As statedbefore,the enginesare placedon the wing of theLCX. Placingthe

engineon the wing requiresthe nacellebe placedina positionto reduce the drag and

interferencewith the wing. This isdone by looking athistoricaldata. The dataused to

scaleisfrom the Lockheed LI011 (Reference41). The dataforthe LI011 was used since

the size of the of the engines are in the same class as the LCX. Even though the L1011

has three engines, the placement of the wing mounted engines is equivalem to that of a

two engine aircrat_. From this data it was determined that e=3 °, _=2 °, X=l.85D and

z=.gD for the LCX. Where e is the angle of the inlet relative to wing canted down and

is the angle of the inlet angled towards the fuselage. By doing this the flow into the inlet

will be local to the wind velocity. X is the distance from the leading edge of the wing to

the front of the inlet. Z is the distance from the chord line to the center of wing. This can

be seen in Figure 7.4.1.

I
x

Figure7.4.I: LCX NacellePlacement
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For thepreliminarydesignthis is a good estimate, but more research needs to be

completed to optimize the nacelle placement. This is due to the HLFC being used on the

nacelle and wing.

The nacelle has also been modified for HLFC. The main goals are the reduction of

the skin friction drag and prevention of laminar separation on the nacelle. By using

HLFC the skin friction will be reduced and the laminar flow will be present to 60% of the

length of the nacelle. This reduces the nacelle skin friction drag by as much as 50% and

the total aircratt drag by 2%. Using the existing V2500 nacelle, the following

modifications were made. The position of the maximum radius was moved from 35% of

the length to 47% of the length. The radius was increased by 1.5 inches. This increased

the maximum radius of the nacelle from 3.125 to 3.25 R.

The pylon is designed to carry the loads of the nacelle and engine. It is determined

from historical data that the width of the pylon will be 18 in. The pylon attaches to the

front spar at 20% chord and the rear spar at 65% chord.

7.5 Inlet Design

The inlet of the nacelle is designed to reduce the velocity of air before it comes in

contact with the fan. A diffuser must be used to increase the pressure and reduce the

velocity. The velocity is reduced from Mach .8 to Mach .6 before it enters the inlet. The

diffuser must reduce the velocity to Mach .4 in order for the engine to run efficiently. As

a result the cowl is designed to increase the pressure and to reduce the drag on the nacelle.

The cowl is designed to be as short as possible, reducing the skin fiction drag. The
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captureareais2743in: comparedto afanareaof3117 in:. Thisgivesadiameterratioof

0.88whichwill reducedtheMachnumberto 0.4.

7.6 Engine Performance and Analysis

The performance curves for a 26,500 lb. engine were scaled using the data

provided by the AIAA. It can be seen in Figure 7.6.1 that the uninstalled thrust is greater

than the installed thrust and as altitude increases the thrust available decreases. At altitudes

above 30,000 ft the thrust no longer varies with the Math number. In Figure 7.6.2 it can

be seen that the sfc is reduced as the altitude is increased and the sfc increases as the math

number is increased.
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8.0 STRUCTURES

8.1 Materials

With the goal of keeping the manufacturing and direct operating costs low for the

LCX, simplicity in structure was attained through a conventional design configuration.

The use of aluminum alloys is emphasized in the majority of structural components as a

proven low-cost, lightweight material. It was important to keep focused on simplicity,

yet not let this design theme detract from the effort to produce a stronger, lighter, and

aerodynamically superior aircraft.

The materials used in the LCX construction are aluminum alloys 2024-T3 and

7075-T3, titanium, steel 300M, and graphite-epoxy composite (Gr-Ep). Aluminum

material accounts for approximately 80% of the structural makeup. Its high strength

characteristics and ability to withstand minor damage without compromising the safety of

the aircraft are driving factors behind this decision.

Aluminum alloy material 2024-T3 was used for areas subjected to fatigue due to

extended application and relaxation of tension stresses. Regions prone to such stresses

include the pressurized cabin shell and lower wing skin.

Titanium is a suitable alternative to light alloys in regions of prolonged operating

temperatures in excess of 150°C, where aluminum would deform. Other desirable

features of titanium include minimal creep deformation and a greater strength-to-weight

ratio. Titanium alloys comprise up to 5% of the structural weight of the LCX Titanium
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panels are also used on the upper wing surface because of their machining properties and

strength.

LCX structures that perform duties under high compression, such as the landing

gear, are composed primarily of steel alloys. The use of such steel components was kept

to a minimum since these alloys have fairly undesirable weight characteristics.

8.2 Wing Design

With the exception of the laminar flow control technology, the LCX basic wing

structural skeleton is typical of that found on a similar class commercial transport. An

initial investigation into stress concentrations yielded the results found in Table 8.2.1.

Moments

Mx

My

Mz

Shear Forces

Sz

Sx

Table 8.2.1:

1,453,400 lb. in.

86,000 lb. in.

61,000 lb. in.

123,000 lb. in.

2600 lb. in.

LCX Wing Forces

The materials and dimensions of the wing components are specified to withstand these

loads. The LCX wing primary structure is aluminum and comprised of front and rear

spars, webs, stringers, ribs, and upper and lower spars. Figure 8.2.1 shows that the wing

ribs are built parallel to the flight path in order to ensure a smooth aerodynamic shape

between the spars.
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Figure 8.2.1: LCX Wing Layout

The wing rib spacing is a factor of the wing loads, and it is desirable to get hinge-rib

locations to coincide with the rib station. Reinforced ribs are also used for engine-mount

attachments and landing gear attachments. Spars are constructed by making caps in the

wing box a different thickness. The forward lower, and rearward upper sparcaps need to

be structurally reinforced to withstand high tensile stresses.

Spanwise stiffeners are closely spaced in order to keep the buckling of the material

to a minimum. Since the LCX wing utilizes laminar flow control, the front spar is toeated

at 20% chord, and the rear spar is located at 60% chord leaving adequate space for the

appropriate high li_ devices (Figure 8.2.1).
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8.3 Wing Covers

The LCX wing cross section is built such that the skin is distributed around the

periphery of the profile. The distributed bending material consists of stiffening elements

running in the spanwise direction. The wing bending loads which cause compression at

the upper surface of the wing are generally higher than those causing compression at the

lower surface. This requires that the stiffening elements along the upper surface be more

efficient and closely spaced than those on the lower surface. The torsional moments are

subjected to resistance primarily by the skin and front and rear spars.

8.4 Fuselage Structure

The LCX fuselage structure was designed through semi-monocoque construction

using stiffening members such as flames, bulkheads, stringers, and longerons to stabilize

the tube of thin skins under compression and shear. The fuselage itself is comprised

entirely of aluminum alloys. The skin is a sheet of 2024-T3 with a thickness of 0.035 in.

Attached to the shell are stringers and spars running 6 inches deep. Since the upper part

of the fuselage is under greater concentrated compressive force, stringer spacing is closer

than the bottom half of the fuselage. Longerons are spaced at one foot and run from the

front fuselage to the aft fuselage.

8.5 Skin and Stringers

Skin and stringers are the most critical structure since they carry all of the primary

loads due to fuselage bending, shear, torsion and cabin pressure. These primary loads are
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carriedby the fuselage skin and stiffeners with frame spacing at regular intervals to

prevent buckling and maintain cross-section. The most efficient structure will have the

least number of joints or splices; therefore the LCX skin panels are large, limited only by

available mill sizes. Stringers, being rolled from strip stock, are limited in length by

manufacturing techniques. The LCX also uses single splices for the longitudinal skin

joints.

8.6 Frame and Floor Beam

The LCX frame and floor beam support the fuselage skin-stringers panel, hold the

fuselage cross-section to contour shape, and limit the column length of the longerons and

stringers. In addition, this structure distributes externally and internally applied loads onto

the shell, redistributes shear around structural discontinuities, and transfers loads at major

joints. The LCX is also designed to support heavy conventional bulkheads and frames,

which preserve the circular shape against elastic instability under compressive longitudinal

loads.

8.7 Fatigue Life of Materials

The LCX was designed to withstand a variety of fatigue loading conditions,

including: ground load, taxiing, takeoff, maneuvering, gust loads, and pressurization. The

most critical part of the LCX structure are the wings, which carry the most important

loading cases that arise from ground loads and gust loads. Since the magnitudes and

respective frequencies of positive and negative gust loads are the same, the fatigue life of
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theLCX wing materials are estimated using a method based on the Linear Cumulative

Damage Hypothesis (Introduced and Tested by Aeronautical Research Laboratories in

Melbourne

8.8 Empennage Structure and Layout

The basic structure layout of the LCX horizontal and vertical tails is the similar to

that of the wing. A conventional horizontal tail is used to minimize the manufacturing and

material costs. This tail basically consists of left and right outboard sessions attached to

the center box within the aft fuselage. The LCX stabilizer is designed to pivot on two

self-aligning bashing type hinge joints attached to the bulkhead in the fuselage. The angle

of attack is adjusted by an electrically driven jackscrew. The center box is designed with

titanium distributed in sparcaps and cover skins for greater bending strength. The vertical

tail is designed in a similar manner, utilizing a multi-spar structure with cover panels. The

structural design for both the elevator and rudder are similar in construction. Front and

rear spars and the skin form a box beam which is the primary structural member of the

elevator and rudder. Due to the high torsional load and local aerodynamic pressure, ribs

are located in close proximity with each other to withstand these loads.

8.9 V-n / Gust Diagrams

The LCX envelopes were created as a function of gross takeoff weight, wing area,

flight altitude conditions, and structural load limits. The resulting V-n diagram is typical

for a commercial transport aircraft. The initial curves running from the origin of the graph
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arethepositiveandnegativestalllimit borders. Thehorizontalstraightlinesrepresentthe

positive and negative structural load limits. A positive load factor limit of 2.5 g's and

negative limit of-1 g correspond to historical values for the same class of aircraft. If these

values are exceeded in flight, the aircraft structure may fail. The vertical straight line

designates the never exceed design dive speed, which is 313 knots equivalent airspeed.

Exceeding this airspeed limitation also may cause structural failure.

Other important airspeeds found in the flight envelope include Vs 1, Va, and Vc.

These are the l-g stall airspeed, maneuver speed, and design cruise speed, respectively.

The airspeed at which the LCX will stall in a 1 g loaded condition is 143 knots equivalent

airspeed. The maneuver speed for the LCX is 227 knots equivalent. This can be seen in

Figure 8.9.1 found on the following page. This is also known as the "turbulent air

penetration speed." At this airspeed, if the aircraft experiences a sudden gust, it will stall

before experiencing structural failure. This airspeed is very important to pilots for obvious

reasons. Finally, the design cruise speed for the LCX is 250 knots equivalent, which is

simply the conversion of the most efficient cruise math (.8) with altitude conditions taken

into consideration.

A gust diagram was created for the LCX to investigate the possibilities of

exceeding the structural loading limitations should the aircraft encounter a strong gust.

Factors that contributed to this analysis included the wing lift curve slope and geometry

and the aircraft weight at the most critical condition and airspeeds. The most critical

weight condition used is at landing weight.
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Figure 8.9.1: LCX V-n Diagram

The original positive stall limit line was plotted with three gust lines- cruise (Vc),

maximum gust intensity (Vb) and maneuver speed (Va) as seen in Figure 8.9.2 found on

the following page. It was important to find out the maximum possible loading due to a

gust. This point is found where the positive stall limit line intersected the maximum

intensity gust line. The speed where this occurs is at 232 knots equivalent airspeed,

producing a gust loading of 2.12.

envelope positive limit of 2.5 g's.

Fortunately, this value falls within the maneuver

The negative gust limits were not investigated since this

is not the critical case. The positive load limits are the critical case that may be exceeded

since a gust will produce a positive g load, not negative.
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9.0 WEIGHT / C.G. EXCURSION

Weight analysis was done on the LCX through two methods and results were

compared. The initial method used aircraft fuselage, wing, and empannage sizes and

geometry for component weight estimations. The second method was to use the aircraft

synthesis software (ACSYNT), which made weight estimations through the use of

historical trends of weight fractions of aircraft gross weight. It was difficult to determine

which method was more accurate for the LCX. It was decided that both analysis methods

would have to be incorporated into the weight calculations. The fuselage and empannage

geometry is fairly standard, thus the weights provided by ACSYNT were used for these

areas. However, due to the incorporation of the hybrid laminar flow control as a key

design feature of the LCX wing, the ACSYNT wing weights were scaled to account for

the changes. Geometric analysis and correction factors were used for the wing and wing

control surface weights. Manufacturer-published weights were used for the engines,

auxiliary power unit, and air-conditioning packs. The resulting weight breakdown is

shown in Figure 9.1 found below.

Some of the key design configurations were decided with weight considerations

well before the weight analysis was actually carried out. It was not certain whether the

engines should be located under the wings or on the aft portion of the fuselage. One

important consideration was that of the critical one-engine inoperative situation that would

subject the LCX to a large adverse yaw. When initial weight estimations were made, it

was found that with wing mounted engines the vertical tail would increase in weight by
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Figure 9.1: LCX Weight Breakdown

about 20% due to the necessity for a large vertical tail surface to compensate for this

critical condition. Also it was found that landing gear weight would increase due to the

necessity for longer struts to clear the engine intakes of potential foreign object damage

(FOD). With the engines mounted aft, the major weight concern comes from the lack of a

negative lifting force by the engines to counteract the bowing tendency by the wings in

flight. Major structural "beefing-up" would need to be done to compensate for this loss.

This would be difficult with the incorporation of the hybrid laminar flow control. In

addition, since the laminar flow control system operates dependent upon the engines, it

would be more efficient to have these power sources close to the system.

Finally, a e.g. excursion analysis was performed to see the different effects of both

configurations. This was where the final decision was made clear. The e.g. travel
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envelopes were created for both engine mounting locations and were then compared. Due

to the large moment created by the heavy engines so far aft, this configuration produced

an envelope that was two times as wide as that of the wing-mounted engine configuration.

With the decision to incorporate the engines into the wing structure, final calculations

showed the c.g to land approximately 2 feet in front of the aerodynamic center, with a

maximum travel of 20% of mean geometric chord.
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Figure 9.1.1 LCX C.G. Excursion
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10.0 STABILITY AND CONTROL

10.1 Empennage and Control Surface Sizing

The empennage and control surface sizing was completed using ACSYNT 2.0

from NASA. The initial inputs into ACSYNT were obtained using the horizontal and tail

volume coefficients from similar aircraft. The first cut areas for the empennage where

calculated from these coefficients. The results were compared to the results obtained from

the stability module of ACSYNT and thus the empennage was sized.

The control surfaces are sized to provide the largest amount of control power

without adding to much complexity. The control surfaces extend from the trailing edge to

just aft of the rear spar. Hinged control surfaces were not used because they would

increase the complexity and maintenance of the empennage. The vertical tail is sized by

engine out and Dutch roll characteristics while the horizontal tail is sized for rotation.

10.2 Fly-by-wire Control System

Fly-by-wire is implemented in the LCX for several reasons. Computers will be

used to control the pressure distribution over the wing by changing the deflection of the

aft flap. The engines are under digital control also. Electronic control of all parts of the

aircraft allows for the systems to communicate between themselves. This requires

electronic control of the flight control systems and thus fly-by-wire technology. It is likely

that in the future there will be digital control of all systems in the aircraft with all systems

being optimized as a group adding to the overall efficiency of the aircraft.
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11.0 SYSTEMS

11.1 Pneumatic/Environmental System

The LCX pneumatic system supplies compressed air to many vital aircraft systems.

The air-conditioning system, hydraulic reservoir, engine starters, anti-icing system, and

potable water tanks all demand pressurized air for efficient operations. Each engine has a

low/intermediate port as well as a high pressure port as sources of pressurized air.

Additionally, there is an APU bleed source for ground operations. From each of these

ports, the air runs through a check valve to prevent reverse flow, followed by a precooler.

Temperature and pressure of the air supply is automatically regulated by the system. Low

pressure air is used during climb, cruise, and holding conditions. High pressure air is used

during descent and low power settings. The high pressure system is regulated at

approximately 55 psi.

The LCX environmental control system (ECS) is designed to be energy-efficient in

providing passengers and crew with conditioned air. This efficiency lies in the fact that

only about 50% of all conditioned air comes from engine bleed, while the rest of the air is

provided by filtered, recirculated air. Lavatory and galley ventilation, forward cargo

compartment heating (the aft compartment uses electrical heating), and electrical

equipment bay cooling systems also rely upon the air-conditioning system.

The ECS has a high-pressure water separation component, consisting of a

condenser, water extractor, and reheater. Water that is extracted from the air is ducted

i
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andsprayed into the ram air upstream of the heat exchangers, which increases the

efficiency of the air cooling system.

Odors and smoke are vented from the lavatories and galleys through overhead

ducting, forced out by vent fans. Both the forward and aft cargo compartments have

independent, closed-loop systems that are self-regulating Air from the forward cargo

compartment is drawn from the aft end by a compartment fan and is warmed by heat

transfer from fan motor. The aft compartment system is similar except that it uses

electrical air heating. The flight deck is provided with conditioned air through sidewall,

windshield, and individual crew outlets.

The cabin pressurization system is regulated by controllers in the main equipment

center. Air data computers provide actual airplane altitude information to these

controllers. Microswitches in the throttle quadrant automatically set controllers to pre-

takeoff mode when appropriate. The pressurization system utilizes air discharge via an

outflow valve that is driven by either of two separate alternating current motors. A dc

system is also utilized for manual operation. Pressure sensors will trigger an altitude

warning switch and alarm to alert the crew of excessive cabin altitude (>10,000 tt.). The

system will go through an automatic shutoff at cabin altitudes in excess of 11,000 ft. The

system layout can be found in Figure 11.1.1.
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Figure 11.1.1: LCX Pneumatic System

11.2 Hydraulic System

The LCX has hydraulic power distributed through three systems- left, right, and

center. There are also three pumps in each system to provide reliability. Primary flight

controls have three separate systems supplying power to power control actuators for the

control surfaces and autopilot servos. The stabilizer trim unit and brake systems all have

dual redundancy. Only one hydraulic power source is used for the thrust reverser and

landing gear systems. The philosophy used is to provide more redundancy for the critical

systems, where no redundanc_y is typically deemed critical for other systems.

i
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Theleft andright systems are very similar, each powered by one engine-driven

pump (EDP) and one alternating current motor pump (ACMP). These two systems are

mechanically connected by a power transfer unit (PTU). In the event of a loss of the left

engine or left EDP, a hydraulic motor in the right system powers a hydraulic pump in the

left system to provide sufficient flow to retract the landing gear and operate the flaps and

slats. The ram air turbine (RAT) retract actuator is powered by the right system. The

RAT is installed in the right ai_ wing-to-body fairing to automatically provide emergency

hydraulic power to the center system flight controls in the event both engines become

inoperable. The pilot has the authority for manual deployment through an override switch.

Retraction can only be accomplished on the ground. When the RAT is extended in flight,

airflow drives the turbine, which drives the hydraulic pump.

The center system is smaller than the left and right systems. It is powered by two

ACMPs and is responsible for only the flight controls. The RAT powers the center system

to provide hydraulic power for emergency operation of the flight controls.

All three systems can be serviced through a central fill point. The LCX pneumatic

system provides reservoir pressurization, which is available whenever the pneumatic ducts

are pressurized. External hydraulic power can be connected to each system. The

hydraulic system layout is given in Figure 11.2.1 found on the following page.
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LCX Hydraulic Systems

11.3 Electrical Power

The LCX electrical system includes provisions for both alternating current (AC)

and direct current (DC) operations. On the ground, ac power is provided from either the

external power panel or the auxiliary power unit (APU). In-flight operations use power

provided by the integrated drive generators (IDG) mounted on each engine. Power can

also be supplied in flight from the APU-driven generator. For ETOPS certification, an

optional hydraulic motor generator (H G) is used. This generator would operate as a

one-time-limited backup source in the event of loss of all main electrical power. Normal

dc power is produced in the LCX by ac/dc conversion. This battery system is used to

provide alternate dc and standby power.
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Ground service supplies power for interior lights, battery chargers, cooling fans,

and cargo handling equipment. DC batteries also provide power for ground equipment.

A main battery and battery charger system provide critical power for the autoland system.

A separate APU battery and charger system provide power for APU starting.

All generated power in the LCX is distributed among the three equipment racks-

front, main, and rear. The main equipment rack includes such components as the airplane

information management system, window heat control unit, cabin temperature controller,

traffic alert/collision avoidance, audio entertainment, flight director system, flap/slat

electronics unit, and PAX address cabin interphone. The forward rack includes the fuel

quantity processor unit and forward cargo controller, while the rear rack houses the brake

system control unit, brake temperature monitor unit, a_ffaxle steering control unit, and tire

pressure monitor unit. The electrical system layout is found in Figure 11.3.1.

EXTERNAL IAUX PDVERI I LEFT I I RIGHT IHYDRAULIC

Figure 11.3.1: LCX Electrical System
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12.0 LANDING GEAR

Layout

The LCX will incorporate a double main gear and single nose gear assembly. Gear

arrangement on the LCX is a tricycle configuration. The main gear will be a dual twin

gear with two wheels per main strut. Each of the two main gear struts, attached to the

wing underside, will retract into the undercarriage area of the fuselage to be fully encased

by the wheel well. The nose gear will have two wheels attached to its strut and will

retract fully into the forward fuselage underside of the LCX. Retraction control for the

landing gear will be a lever placed in the cockpit accessible to both the captain and first

officer.

The length of the landing gear have been determined for a combination of desired

qualities. The landing gear on the LCX allows for a fairly low engine ground clearance for

the special engine pylon placement needed for the LCX Laminar Flow Control while

allowing for minimal FOD (Foreign Object Damage). For weight considerations, the nose

gear on the LCX will create a slope of 3 degrees while on level ground due to its shorter

length. For the LCX, the main landing gear have been placed 15 degrees behind the aft

C.G. to allow for a adequate rotation angle without tail scraping. The fuselage will be

fitted, however, with a skid pad in case of over-rotation. Additionally, as a factor of the

aircraft center of gravity, the tip over angle for the LCX was determined to be 56 degrees,

less than the critical 63 degree limit therefore minimizing the possibility of tipping over.
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12.1 Main Gear

TheLCX main gear will incorporate an oleo-pneumatic strut to support the

landing shock as well as to provide a means of ground mobility. The main gear of the

LCX will support approximately 91% of the weight of the aircraft. The diameter of the

main gear shock strut is 8.5 inches. Using an equation fi'om (Ref 27), the total stroke of

the main landing gear was calculated to be 18.5 inches. This calculation allows the LCX

to undergo 18.5 inches of gear travel in the vertical direction upon landing of the aircraft.

Spray deflectors will be installed on the main landing gear of the LCX to deflect water

away from engine intakes. Also incorporated on the landing gear is a system to retract the

wheel well door to help act as a debris shield for wheel well protection from object

damage.

o o __.,% o

Figure 12.1.1: LCX Main Gear Kinematics Retraction Scheme
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Themain gear will have side struts as well as drag braces attached to the main strut. As

seen in Figure 12.1.1, the side brace assembly is attached to provide lateral support to the

main gear. During retraction, the side braces, using links, will fold up along the main gear

strut. Torque links will insure that the main gear is held in an irrotational position in both

the extended and retracted configurations..

12.2 Doors for Main Gear

On the LCX, each of the main gear is equipped with a retractable door. One of the

main functions of the doors is to act as a barrier to protect the wheel wells from debris

accumulation. When the gear is extended, the doors will still be in a closed position. The

doors will open long enough for the gear to retract into the wheel well and then shut

therefore enclosing the entire wheel well. If for any reason the doors should fail to shut

during landing, skids attached to the edges of the doors will act as a protective shield to

prevent damage. In case of lock failure in the gear retracted position, the wheel well

doors will also be strong enough to support the gear.

Doors for the main gear will be directly linked to the gear strut via a mechanical

assembly in order to open and close with the gear movement to the extended and retracted

position. In the extended position, the gear doors will be closed. The door will then open

to allow the main gear to enter the wheel well. The door will then shut again upon

retraction. For landing gear extension, the same operation will occur. Manual bypass

levers will be placed so that they are accessible by ground maintenance personnel. All
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locksandpressurizationequipmentin the wheel wells as well as the hydraulically locked

doors will be relaxed or depressurized when the manual bypass is used.

12.3 Nose Gear

On the LCX, a two wheeled nose gear will be used for landing shock support,

weight support, and steering of the aircraft. The nose gear supports approximately 9% of

the weight of the aircrat_. Nose gear on the LCX is retractable and located in the forward

section of the aircraft. The diameter of the nose gear shock strut is approximately 5

inches. Hydraulically actuated cylinders will be used for the extending and retracting

process. The nose gear is positioned so that in the retracted or extended position, the

wheel is clear of the cockpit area.

(
Figure 12.3.2:

)
LCX Nose Gear Kinematics Retraction Scheme

As with the main gear, the nose gear will utilize an oleo-pneumatic shock strut to absorb

the weight of the aircraft and landing shock. Drag links will support the nose strut in both

the fore and att position. Lock links will lock and secure the drag braces while in the

extended and retracted positions (Figure 12.1.1). On the LCX, two doors will act as an

FOWL ENTERPRISES 66 LCX



aerodynamic seal to enclose the nose gear wheel well. These doors will be mechanically

linked to the gear strut so that the doors move to the open and closed position based on

position of the nose gear assembly.

The nose gear on the LCX will be equipped with ground sensing mechanisms to

provide a mechanical system to switch aircraft control systems from a flight mode of

operation to a ground mode. The system also switches the aircraft from ground to flight

mode. Sensors will engage a lock mechanism on the landing gear lever in the cockpit.

This lock will prevent the unintentional retraction of the landing gear while on the ground.

If desired, the nose gear can be retracted using a override switch while on the ground.

Spray deflectors will be attached to the nose gear at the lower end of the nose shock strut.

These spray deflectors will help minimize water and FOD to the engines placed on the

wings of the LCX. In addition, debris deflectors will be attached to the spray deflectors to

also help with FOD.

12.4 Steering

Steering of the LCX will be provided by using the nose gear as well as differential

braking of the main gear. Two hydraulic cylinders will be placed on both the right and left

of the nose gear landing strut. These cylinders will provide steering control and direction

by pulling or pushing in the desired direction of travel. The LCX will use two steering

mechanisms. The rudder pedals an the LCX will provide 7° of directional control to the

left and right of the center line of the aireratt. Table 12.4.1 on the following page shows

the steering clearance distances for the LCX.
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Wingtip Clearance
NoseClearance
WingGearClearance

Nosegear Clearance

Minimum Width for 180 deg. turn

Nose Gear Steerin8 An_le

Table 12.4.1:

75.6 ft.

70.4 ft.

33.9 ft

49.1 ft.

121 ft.

68 de_.

LCX Steering Clearance Around Turning Center

The LCX will also be equipped with a steering tiller located on the captain's side of the

cockpit. The steering tiller will provide a 68 ° steering angle to the left and fight of the

center line. The nose gear can be turned only when ground sensing mechanisms in the

nose gear have switched the aircraft to ground mode of flight.

12.5 Wheels and Tires

The LCX will use four forged aluminum, split type wheels on the main landing

gear, two per gear. The wheels have been tested and certified to an equivalency of 50,000

miles before delivery. Tire data can be found in Table 12.5.1.

The tires used on the main gear are manufactured by the B.F. Goodrich

Corporation. Tires for the gear will be two 44 x 16 size tubeless radial tires with a ply

rating of 32. Maximum unloaded tire inflation of these tires will be 225 psi and the

maximum speed rating will be 225 miles per hour. With an inflation pressure of 156 psi

and a tire deflection of 7.45 inches upon landing, the footprint, or area of tire contact,

while on the ground will be approximately 1.6 square feet. To prevent blow-out from

excessive pressure build-up from heat, thermal fuse plugs will be incorporated into the tire

to prevent this occurrence. The calculated LCN was found to be 65.

FOWL ENTERPRISES 68 LCX



Main gear

Tire Selected for Main Gear 44x16

Loaded Radius 17.9 in.

Max loading 45000 lb.

Rolling Radius 17.9 in.

Ply Rating 32

Tube Type tubeless

Required Inflation Pressure 156 psi.

Nose gear

Tire Inflation 225 psi

Max Operating Tire Speed 225 mph

Max Actual Width 16.00 in.

Max Actual Diameter 43.25 in.

Tire Deflection 7.45 in.

Footprint Area 225 sq. in.

Tire Selected for Nose Gear 29x7.7 in.

Loaded Radius 12.2 in.

Max Loading 13800 lb.

Rolling Radius 12.2 in.

Ply Rating 32

Tube Type tubeless

Required Inflation Pressure 102 psi.

Tire Inflation 230 psi.

Max Tire Operating Speed 200 mph

Max Actual Width 7.85 in

Max Actual Diameter 28.4 in

Tire Deflection 4.00 in.

Footprint Area 69 sq. in.

Table 12.5.1: LCX Tire Data

The nose gear of the LCX will use two forged aluminum, split type wheels, one for

each side of the strut and be equipped with tires manufactured by B.F. Goodrich. The tire

size is a 29 x 7.7 tubeless radial tire with a 16 ply rating. Maximum unloaded tire

inflation of the nose gear tires is 230 psi with a maximum speed rating of 200 miles per

hour. The nose tire will have a maximum deflection of 4 inches upon landing of the

aircraft. With maximum loading, this tire deflection, and a footprint of.5 square feet, the

tire inflation pressure will be around 100 psi.

12.6 Brakes

The brakes on the LCX are an important and integral part of the entire gear

assembly On the main landing gear, hydraulically operated, multiple disk brakes will be
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installedfor each wheel of the main gear. Carbon brakes will be used to provide braking

for the LCX Carbon brakes have high thermal conductivity, low thermal expansion, high

thermal shock resistance, and a high temperature limit. These properties are desirable for

a braking system. With carbon brakes capable of maintaining strength at high

temperatures, overhaul time could be reduced drastically over new beryllium and

conventional steel brakes. Brake wear will be monitored using sensors allowing for wear

determination without the need for disassembly. Manual braking can be accomplished

using brake pedals in the cockpit. The parking brake on the LCX, used in cases of

prolonged non-use, will be capable of maintaining sufficient and adequate brake pressure

for a period of time no less than eight hours.

Automatic braking is incorporated into the LCX. Using a selected rate of

deceleration determined by the flight crew, the brakes will automatically engage upon

landing with the thrusters in the idle position. The system will compensate for any delay in

the nose gear touching down after the main gear during landing. The autobraking system

will work in conjunction with the other devices such as thrust reversers and speed brakes

to allow a constant deceleration of the aircraft. In a rejected take-off condition, the brakes

will apply maximum pressure to the brakes if the throttles are moved to the idle position

with RTO (Rejected Take-Off) switch applied and the aircraft speed being greater than 85

knots. Automatic disengaging of the autobrake system will occur if the thruster is moved,

manual braking is applied, or the system disarm switch is flipped.
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TheLCX will beequippedwith ananti-skidbrakingcontrolunit connectedto each

of themaingearassemblies.Theanti-skidsystemwill preventthewheelsof themaingear

from lockingup thereforeeliminatingskiddingduringapplicationof thebrakes.Theanti-

skidunit, locatedin theelectronicsbay,will monitorskiddingwith sensorsin thewheels.

Wheelspeedis comparedto the speedof theotherwheel. Ifa discrepancyoccurs

betweenthewheelvelocities,skiddingiscompensatedandcorrectedfor. Theanti-skid

devicecanbearmedor disarmedwith a switchlocatedin thecockpit. Automaticarming

or disarmingwill occurwhenthegearisextendedor retracted,respectively.

12.7 Indicators

Status and sensor information regarding the landing gear will be reported and

displayed on the EICAS display in the cockpit of the aircraft. Tire temperature, tire

pressure, gear position, brake temperature and anti-skid control indications will be

displayed. In addition, green, amber, and red lights for each of the main gear and the nose

gear will be used as indicators. If there is disagreement between actual and indicated gear

position, warning lights will illuminate and an aural warning horn will sound. Red lights

will turn on if there is any major malfunction with the landing gear systems. If a problem

should arise that is not detrimental to flight operations, amber warning lights will

illuminate. Green status lights will indicate that operations are normal.
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13.0 MANUFACTURING

Existing technology will be used for the efficient production of the different

aircraft components. The modem method of pre-design and fit testing with computer

aided design (as developed by Boeing), will be utilized to insure part compatibility before

production. Die molding will be used for the production of metal components such as the

landing gear struts and cargo decking.

The wing of the LCX will consist of the typical spar and rib structural skeleton.

The spars will consist of laid-up C-channels that will form an I-beam when joined back to

back. Many of these small I-beam components will be assembled to form a full length

spar. All wing inner systems (fuel, flight controls, engine controls) will be incorporated,

followed by installation of the control surfaces. The attachment of the upper wing skin is

the final step in the wing manufacturing process.

The fuselage is broken down at this stage into three sections: nose, tail, and

fuselage skin. Each of these sections is split into a left and right half. These components,

as well as the three main bulkheads, will be set in place using a jig and overhead crane

system and joined. The cargo bay floor and major systems can be added at this point.

Final assembly of the LCX is prepared by the movement of the fuselage, wing

sections, horizontal tail, and vertical tail on rails to the final assembly room. Silicone

protectant is applied at this stage to all subassemblies to ensure complete, uniform

coverage. At this point, engines and avionics are installed followed by testing for proper
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operation.Then theLCX isreadyfor roll-out andthe final paint coating, as per the

customer's desire.

Each LCX must go through a specific number of ground and flight test hours as

required by the Federal Aviation Administration. Upon successful completion of many

testing exercises, each aircraft will be issued an Airworthiness Certificate from the FAA.

This will certify the airerait for commercial operations and is the final step before the LCX

will be sold.
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14.0 AIRPORT OPERATION AND MAINTENANCE

14.1 Operation

The LCX is a versatile aircraft in that it can be operated from airfields ranging

from international airports in metropolitan areas to regional and municipal airports in less

populated areas of the country.

14.2 Servicing

International airports have major facilities and equipment to service the aircraft

during ground operations. For this reason, the LCX can accommodate ground service

equipment and personnel with minimum congestion. An airport equipped with a

passenger bridge or jetway can use the bridge for loading and unloading of passengers.

The arrangement of ground support equipment can be seen in Figure 14.2.1. The LCX is

fitted with tow accessories on the nose landing gear for use by the ground tow vehicle.

The tow vehicle will be used to back the aircraft on to the ramp without the use of main

engine power for acceleration. By-pass valves located on the nose gear will allow the tow

vehicle to provide directional guidance to the aircraft during the tow.

A galley service truck will have access to the aircraft in both the aft and forward

sections of the aircraft. The forward truck will provide galley service and restocking of

supplies and amenities for the forward galley which serves the first class and forward

economy section of the aircraft.

FOWL ENTERPRISES 74 LCX



Next to the forward galley service vehicle, space is provided for an external

electrical power generator. This mobile generator will provide electrical power for all

electricity needs during the loading and unloading of the aircraft. While on the ground,

this generator will have priority over the APU or direct current system in providing power.

Loading of baggage onto the LCX will be faster and easier with a bulk cargo

loader used in the loading area of the aircraft. The loader is a mobile vehicle with a

conveyor belt to load baggage and light cargo onto the aircraft. Baggage is delivered

from the terminal area to the aircraft via baggage cargo tractor and trailers. The LCX can

accommodate two of these cargo tractors for baggage loading in the forward and aft holds

of the aircraft.

Fuel for the LCX can be delivered by either the use of a fuel truck or by direct

connection to underground fuel supplies at the airport. The use of a fuel truck is

positioned in such a way that it will not add to the congestion surrounding the aircraft

during servicing. The fuel truck will load fuel on the right side of the aircraft and park

underneath the wing or as close to the aircraft as possible.

Lavatory servicing on the LCX can be accomplished using two lavatory service

vehicles. One of these vehicles will service the forward lavatory while the other services

the remaining lavatories on board. The trucks will remove waste water or raw sewage

from drainage piping incorporated into the LCX for such purpose. The system is a single

point system designed for speed, ease, and efficiency. During servicing, the toilets will be

recharged for additional usage on subsequent flights. In addition to a non-potable water
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truck, apotablewatertruck will servicethe aircraft to replenish fresh water used by the

galley and sinks in the lavatories.

In the rear of the aircrall, the cabin cleaning service vehicle will park and utilize the

att starboard door to access the aircraft. Due to this location, any work needed to be done

on the aircraft can be accomplished with minimal interference from other maintenance and

service groups and personnel.

While being serviced on the ground, an air conditioning unit will be hooked up to

ports on the aircraft to provide ventilation through heating or cooling as dictated by

climate. The air conditioning unit will be placed near the forward lavatory service station.

14.3 Minimum Servicing

Since the LCX is capable of landing at smaller municipal and regional airports,

provisions had to be made to allow for a minimum required number of service vehicles to

provide adequate and sufficient servicing for another flight. As seen in figure 14.3.1, the

LCX can be serviced with a single lavatory truck, a fuel truck or fuel delivery system,

potable water supply truck, and baggage trains. The aircraft is equipped with an ample

potable water supply, a reservoir for non-potable water, and supply of additional beverage

and snack items to allow the absence of one or two servicings at destinations. The LCX is

also available with an optional air stair for use at airports not equipped with a passenger

bridge, at airports which use shuttles for transporting passengers to the terminal area, or at

airports without mobile aircraft stairs.
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Figure 14.2.1: Ground Operations For Airport With All Servicing Options

Service Vehicle Locations

A Tow Tug G Lavmtory Service Veni¢le
B GJdley Sarvica Vonichl H C.ai:in Cleaning Vehicle
C Eleclrlca_ Power Generaw I )om/_e WaW
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E Bulk Cargo Train K I_er Bridge
F Fuel Train
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Figure 14.3.1: Ground Operations For Airport With _mimal Servicing Options
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14.4 Maintenance Scheduling

The LCX has been developed with a maintenance program suggested for use by

operators of the aircraft. The LCX will be required to go through different levels of

maintenance according to operation time since the last required service.

Class 1

The first level of service for the LCX is the Class 1 service. This service is

required after each termination of a flight segment at the destination unless a higher class

check is scheduled for the aircraft at that time. Class 1 servicing includes visual inspection

of the fuselage, tail and empennage, engines, wings, landing gear, tires and wheels, and

leak prone areas.

Class 2

Class 2 service should be performed no later than 50 flight hours since the last

Class 2 check. Class 2 service includes inspections similar to a class 1 service with the

addition of galley equipment maintenance, checks of major fluids, cargo hold inspections,

gear doors, emergency systems, and other general visual inspections.

Class A

The next level of maintenance recommended for the LCX is a Class A service and

check. This check should be performed no later than 400 hours since the last Class A
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check. A Class A check includes all of the items in the Class 2 check as well as testing of

avionics, emergency fire suppression systems, egress systems, hydraulic reservoirs, rudder

and elevator actuators, and other more detailed sensor equipment.

Class C and Heavy Maintenance Visit

Two additional checks are the Class C and Heavy Maintenance Visit. The Class C

check is a complete inspection of all the systems and subsystems of the aircraft. Class C

checks should be performed no later than 450 days or 3000 hours since the last Class C

check. The Heavy Maintenance Visit is the most thorough of all the inspections. In

addition to all the servicing, the structural integrity and airworthiness of the aircrait is

inspected. This inspection should take place no later than 1450 days from the last Heavy

Maintenance Visit.
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15.0 COST ANALYSIS

15.1 Fowl Enterprises Cost Philosophy

One of the design requirements of the LCX program is that the aircraft must be

low cost. Since this is one of the major reasons for the creation of this aircraft, it is

imperative that, throughout the entire design phase, a cost philosophy be kept clearly in

mind. A theme was determined from the start in order to simplif3, the process and

eliminate any unnecessary variables. The LCX cost philosophy has been to achieve the

lowest possible direct operating costs (DOC) through the integration of modem

technologies and conventional design. The incorporation of HLFC as a tool implies that

there will be a rise in production costs per aircrait. This increase in production costs will

be mostly attributed to a slight increase in tooling and quality control costs required for

the HLFC system. Yet this is an accepted tradeoffby Fowl Enterprises with the

understanding that long-term costs will be significantly reduced due to long-range

operations and an assumption of rising fuel costs that will deem other aircraft less

economically fit than the LCX.

Initial investigations into the different costs incurred in aircraft design have shown

satisfactory results. The results of our investigation are seen in the Life Cycle Cost (LCC),

Acquisition Cost, and the Direct Operating Cost (DOC) of the aircraft with a assumed

production run of approximately 800 aircraft, and a service life of twenty years.
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Oneof thecomponentsof theLife CycleCostof theLCX programis the

Research,Development,TestandEvaluationcost (RDTE). The RDTE cost of the LCX

is comprised of different areas such as development support and testing, airframe and

engineering, test facility and simulation, and the test aircrait cost.

Aircraft Selling Price

Direct Operating Cost

Indirect Operating Cost

Life Cycle Cost
Production Costs

$31 mil.

.038

$US/PAX/nm

.022

$US/PAX/nm.

$422 mil.

$24 mil.

RDT&E Cost

Acquisition Costs

Operating Costs

Disposal Costs

$2.5 rail

$28.5 rail.

$386 mil.

$3.3 mil.

Table 15.1.1: LCX Major Costs for the Program Per Airplane

Due to extensive research already done in the field of Hybrid Laminar Flow Control, any

increase in development support and testing cost is attributed only to the application of

HLFC to this particular aircraft program. Airframe engineering and design cost is one

area where new design philosophies are making an impact in lowering the cost of RDTE.

Integrated Product Development (IPD) and cross-functional organizations are scaling

back the needed man-hours and labor costs for each phase of development. The use of the

CATIA computer-aided drafting software allows for proper pre-development of parts and

components such that the potential for post-production discrepancies is significantly

reduced. Use of cross-functional organizations reduces the number of individuals working

on one project and increases the effective productivity of each design group. RDTE costs

for the LCX are reduced by the incorporation of these two management philosophies.

With this management style, the Flight Test program, which is a significant percentage of
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thetotalRDTE costof theprogram,will requireminimaltimeandexpense. This isdue

to theaforementionedreductionin post-productionproblemsor discrepanciesinproduced

testaircraft Theacquisitionanddisposalcostof theLCX takesin to accounttheminimal

useof compositesandothermaterialsaswell asaluminum.Theoperatingcost,including

directandindirectoperatingcost,is themostsignificantsegmentof theLife CycleCostas

seeninFigure 15.1.1.

Operational Disposal

Costs 91% Cost 1%

RDTE

1%

Acquisition
Cost 7%

Figure 15.1.1 : LCX Life Cycle Cost Breakdown

Many of today's aircraft operators are still operating older aircraft, many of them

well beyond their projected service lives. These aircraft utilize outdated technologies and

have relatively high operating costs. Since direct operating costs are an important area of

cost reduction for the operator a large amount of study was dedicated to this area. The

LCX boasts a significant reduction in DOC through the use of HLFC. An investigation

was conducted in this area to see how effective this technology will be. Flight range is the
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drivingfactorin theeffectivenessof thedragreductionpromotedbylaminarflow control

overtheLCX wing. For low rangeflights, thecostof operatingtheLCX with theHLFC

systemishigherthanthereductionin costfrom fuel saved.For thisreason,theLCX is

clearlydefinedasamedium/longrangetransport.However,Figure 15.2.1demonstrates

that astheLCX flight rangeexceeds1500nm, costreductionscomparedto conventional

aircraftwith noHLFCbeginto takeeffect. Theoperatingcostin dollarsperavailableseat

milecontinuesto decreaseastherangeis increased.For flight rangesover 1750nm.,the

DOCcouldbe reducedbyasmuchas3%.

0.07 I
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o.o55
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With HLFC

Figure 15.2.1: LCX Cost vs. Range

15.2 The Effect of Fuel Prices

Another aspect that was investigated was the effect of fuel price on the DOC of

the LCX. Current fuel prices have been at an artificially deflated level for some time.

Fowl Enterprises presumes that these prices will increase significantly through the course
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of the next ten years. To protect operators from experiencing extreme cost rises in direct

operating costs from rising fuel costs, the LCX has been equipped with HLFC. In Figure

15.2.1. it can noted that the current fuel price is approximately

25

20

15

10

5

0

-5

-10

0.35

II A = A

0.55 0.75 0.95 1.15 1.35

Fuel Price

Without HLFC

='="" - With HLFC

Figure 15.2.2: LCX Percent Change in DOC vs. Fuel Price at $ 0.56/gal.

$ .56/gallon at the time &this printing. This is the point where the DOC for a HLFC

equipped and non-equipped LCX are fairly equal. As fuel price increases, the amount of

DOC increase is less dramatic with the HLFC, making the LCX a more cost efficient

aircraft. At a fuel price of $. 80/gallon, savings in DOC are predicted to be 4%.

However, if fuel price happens to decrease, the LCX direct operating costs will increase

relative to other aircraft. As seen in the DOC breakdown in Figure 15.2.3, fuel costs are

part of the flying category, which represents 28% of all DOC costs. The ability of LCX to

minimize the impact of fuel prices on the DOC would make the LCX an invaluable asset

to any aircraft fleet of any operator.

I i i
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Maintenance
37%

Depreciation
27%

Flying
28%

Financing Fees and Taxes
7% 1%

Figure 15.2.3: LCX Direct Operating Cost Breakdown

15.3 Production and Price

The projected selling price of the LCX with HLFC is approximately $31 million.

Since this is derived from the predicted production of 800 aircraft, any increase in the

Selling Price $31 mil. Break-even Unit 570
Production Run 800 Return on Investment 7.5%

Table 15.3.1: LCX Cost Data

number of orders for the LCX will bring the cost of the aircraft down Figure 15.3.1. As

more aircraft are produced, the costs of engineering, tooling, and RDTE are divided mong

more units. Thus, the LCX unit price decreases as more aircraft are produced. Another

area of interest for Fowl Enterprises is determining when the LCX will become a

profitable venture. Using an analysis program with an economics module, a projected net

cash flow curve was created from the costs and found to show that the LCX program
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Figure 15.3.1: LCX Cost vs. Quantity Produced

will take approximately 13 years to break even Figure 15.3.2. The number of aircrat_

required to reach the break even point is around 570 aircrat_. Fowl Enterprises expects

not only to meet this production number, but produce over one thousand of the series.

The return on investment of the LCX at the $31 million price is nearly 7%.
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Figure 15.3.2: LCX Program Net Cash Flow
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16.0 CONCLUSION AND RECOMMENDATIONS

Based on the design skills gained through research in the process of creating this

solution to the proposed design the following recommendations are made. First and

foremost the design must be optimized at a lower weight. The LCX in its current state

has not taken full advantage of all possible means of saving weight. With one more full

iteration of the aircraR, the weight could be optimized while still retaining the current

range of the aircraft. ACSYNT would have been useful for this purpose but no enough

time was available to fully learn the system so much of the time spent using the system

was wasted.

Composites were not extensively used on the LCX to retain the designs simplicity

and ease in its maintenance. The use of composites does offer many benefits not only in

weight savings but also in environmental and manufacturing advantages. Fowl Enterprises

now believes that composites will need to be implemented more extensively in the next

iteration of design to lower its weight.

The LCX should also use a stability augmentation system to lower trim drag by

having a static margin. Stability augmentation was not used because there was no time to

perform the analysis needed to implement the system.

Finally the decision to use HLFC was found to be a good one. HLFC has been

proven possible and will help the LCX to capture a new part of the airline market.

i
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